Time Series Analysis

Prof. Lea Petrella

MEMOTEF Department Sapienza, University of Rome, Italy

Class 3

- Example 2. Process with trend. The following process
 X_t = α + βt + ε_t with ε_t ∼ WN(0, σ²) is non- stationary (in
 mean...although it is stationary in variance!)
- In fact:
- $\mathbb{E}(X_t) = \alpha + \beta t$
- $\gamma(0) = \sigma^2$
- $\gamma(h) = Cov(X_t, X_{t+h}) = \mathbb{E}\left[(X_t \mathbb{E}(X_t))(X_{t+h} \mathbb{E}(X_{t+h}))\right]$

$$= \mathbb{E}\left[\left(\alpha + \beta t + \epsilon_t - (\alpha + \beta t)\right)\left(\alpha + \beta(t+h) + \epsilon_{t+h} - (\alpha + \beta(t+h))\right)\right]$$

$$= \mathbb{E}\left[\epsilon_t \epsilon_{t+h}\right] = 0$$

realizzazione di un processo con trend

Figure: Model with trend equal to 4 + 0.2t and N(0, 1).

• Example 2. Random Walk. A random walk process is the easiest (non stationary) stochastic process one can think of and represents the position of a particle that moves randomly after t steps (t = 0, 1, 2, ...).

$$X_t = \epsilon_t + \epsilon_{t-1} + \ldots + \epsilon_0 = X_{t-1} + \epsilon_t.$$

• If the movement of the particle is such that $P(\epsilon_t = 1) = \frac{1}{2}$ and $P(\epsilon_t = -1) = \frac{1}{2}$, assuming that the process starts form the origin, $\epsilon_0 = 0$, we will obtain the following graphs:

Figure: Representation of a Random Walk and its ACF. Non stationary process.

Lag

• If we want to analytically evaluate the stationary property of $X_t \sim WN(0, \sigma^2)$, we have that

•
$$\mathbb{E}(X_t) = \mathbb{E}(\epsilon_0 + \epsilon_1 + \ldots + \epsilon_{t-1} + \epsilon_t) = 0$$
,

• $\mathbb{V}ar(X_t) = \gamma(0) = \mathbb{V}ar(\epsilon_0 + \epsilon_1 + \ldots + \epsilon_t) = t\sigma^2$,

•
$$\gamma(t, t+h) = Cov(X_t, X_{t+h}) = \mathbb{E}(X_t, X_{t+h})$$

$$= \mathbb{E}\left[(\epsilon_0 + \epsilon_1 + \ldots + \epsilon_t), (\epsilon_0 + \ldots + \epsilon_t + \epsilon_{t+1} + \ldots + \epsilon_{t+h})\right] =$$

$$= \mathbb{E}(\epsilon_0^2 + \epsilon_1^2 + \ldots + \epsilon_t^2) = t\sigma^2.$$

- The process is non-stationary in that the moments of order 2 depend on time t.
- The Random Walk is also called unit-root. We will discuss later the reason.

- The ACF is important in order to understand if the process is stationary. It gives information on the existing dependence structure.
- It gives information on which kind of model can be used to study the process.
- It is then important to estimate the ACF generated by the observed data by using samples obtined.
- Let $\{x_1, \ldots, x_n\}$ be the observed time series and

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

be its sample mean.

• Then the sample autocovariance function is given by

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=h+1}^{n} (x_t - \bar{x}) (x_{t-h} - \bar{x})$$

and the sample ACF is given by

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.$$

• For example, if the series has length n = 25 then the estimate can be $\hat{\rho}(0) = 1, \hat{\rho}(1) = 0.387, \hat{\rho}(2) = 0.164, \dots, \hat{\rho}(13) = -0.265.$

- *ρ̂*(*h*) represents the autocorrelation function observed for the time series for different values of *h* and gives information about the ACF *ρ*(*h*) of the (unknown) process that generated the dataset.
- The graph of ρ̂(h) with respect to different lags h is defined as correlogram of x_t.
- The correlogram gives information about the existing ACFs in the observed sample, that is information about serial dependence.

correlogramma con banda per processi stazionari

Figure: Correlogram of a stationary series.

It can be shown that there is no ACF in the generating process (i.e., if ρ(h) = 0 when h ≠ 0), that is, if the process is a white noise then in the observed series and sa n increases we have

$$\hat{
ho}(h) \sim N(0, rac{1}{n}).$$

- For a series without autocorrelation we expect that the estimated ACF decreses as *h* increases and that about 95% of the PACF lies in the interval $\pm 1,96/\sqrt{n}$.
- This means that in the plot of the ACF, the bars corresponding to the estimated autocorrelation that are inside the blue lines (the interval $\pm 1,96/\sqrt{n}$) can be considered null.

• The ACF is considered to be significantly different from zero if its value lies outside the interval

$$\left(-\frac{1,96}{\sqrt{n}},\frac{1,96}{\sqrt{n}}\right).$$

- Values of ρ̂(h) inside the interval, although different for zero, suggest that the estimated autocorrelation can be due to randomness (i.e., not being a property of the process). Think about the correlogram of the white noise.
- Note, however, that even when there is no autocorrelation, we sometimes expect to see ρ̂(h) outside the blue lines.
- That is, when computing the ACF for the first 30 ACF coefficients, we can expect to see one, two or even three ouside the blue lines.

correlogramma con banda per processi stazionari

Figure: The blue lines correspond to the interval $\pm 1,96/\sqrt{n}$ per n = 200.

Some instruments: lag operator and differences

• lag operator:

$$Bx_t = x_{t-1}$$

• when applied twice to the series we get

$$B^2 x_t = B(Bx_t) = B(x_{t-1}) = x_{t-2}$$

Morel generally,

$$B^k x_t = x_{t-k}.$$

• difference operator:

$$\nabla_1 x_t = x_t - x_{t-1} = (1 - B)x_t.$$

More generally,

$$\nabla_k x_t = x_t - x_{t-k} = (1 - B^k) x_t.$$

- One of the most important steps in statistics is how to build models that can represent well phenomena of interest, with the goal to describe, interpret and possibly forecast them.
- Generally, a model is characterized by a relation cause-effect among the variables that is the most parsimonious that can be achieved, that is a relation that makes use of the less number of parameters to represent it.

 In statistics, that kind of relation is not expresses in a deterministic form such as

$$X_t = f(X_{t-1}, \ldots, X_{t-k}, \theta).$$

$$X_t = f(X_{t-1}, \ldots, X_{t-k}, \theta) + \epsilon_t.$$

• For example, we can think of a model

$$X_t = \alpha + \beta X_{t-1} + \epsilon_t.$$

• The goal is to understand the model that generate the observed series.

- Choose a class of models that may have generated the observed series (ARMA,ARIMA,ARCH,GARCH).
- Identify the class of models in a parsimonious way, among those that better fit the observed series the model with less explanarory variables (use ACF, PACF, AIC).
- Estimate the parameters (OLS, MLE).
- Diagnostic: evaluate if the selected model fits the observed series and/or if the hypothesis about the distribution of the shock are correct.
- Use the model to forecast.

- We will first study a family of linear models, *ARMA*(*p*, *q*), that evolve in time according to a dynamics that explains present vales depending on past values by means of a linear relation.
- More specifically, within this class of models the observation at time t depends on that at time t 1, t 2, ..., t p and on the shocks at time t, t 1, t 2, ..., t q.
- We will consider Moving Average models, *MA*(*q*), then Autoregressive, *AR*(*p*), and finally the Autoregressive Moving Average *ARMA*(*p*, *q*).