
Time Series Analysis

Prof. Lea Petrella
MEMOTEF Department

Sapienza, University of Rome, Italy

Class 3

1 / 18



Example 2. Process with trend. The following process
Xt = α+ βt + ϵt with ϵt ∼ WN(0, σ2) is non- stationary (in
mean...although it is stationary in variance!)
In fact:
E (Xt) = α+ βt
γ(0) = σ2

γ(h) = Cov(Xt,Xt+h) = E [(Xt − E(Xt)) (Xt+h − E(Xt+h))]

= E [(α+ βt + ϵt − (α+ βt)) (α+ β(t + h) + ϵt+h − (α+ β(t + h)))]

= E [ϵtϵt+h] = 0

2 / 18



0 20 40 60 80 100

5
1

0
1

5
2

0
2

5

realizzazione di un processo con trend

t

X
(t

)

Figure: Model with trend equal to 4 + 0.2t and N(0, 1).
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Example 2. Random Walk. A random walk process is the easiest (non
stationary) stochastic process one can think of and represents the
position of a particle that moves randomly after t steps
(t = 0, 1, 2, . . . ).

Xt = ϵt + ϵt−1 + . . .+ ϵ0 = Xt−1 + ϵt.

If the movement of the particle is such that P(ϵt = 1) = 1
2 and

P(ϵt = −1) = 1
2 , assuming that the process starts form the origin,

ϵ0 = 0, we will obtain the following graphs:
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Figure: Representation of a Random Walk and its ACF. Non stationary process.
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If we want to analytically evaluate the stationary property of
Xt ∼ WN(0, σ2), we have that
E(Xt) = E(ϵ0 + ϵ1 + . . .+ ϵt−1 + ϵt) = 0,
Var(Xt) = γ(0) = Var(ϵ0 + ϵ1 + . . .+ ϵt) = tσ2,
γ(t, t + h) = Cov(Xt,Xt+h) = E(Xt,Xt+h)

= E [(ϵ0 + ϵ1 + . . .+ ϵt), (ϵ0 + . . .+ ϵt + ϵt+1 + . . .+ ϵt+h)] =

= E(ϵ2
0 + ϵ2

1 + . . .+ ϵ2
t ) = tσ2.

The process is non-stationary in that the moments of order 2 depend
on time t.
The Random Walk is also called unit-root. We will discuss later the
reason.
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Sample ACF

The ACF is important in order to understand if the process is
stationary. It gives information on the existing dependence structure.
It gives information on which kind of model can be used to study the
process.
It is then important to estimate the ACF generated by the observed
data by using samples obtined.
Let {x1, . . . , xn} be the observed time series and

x̄ =
1
n

n∑
t=1

xt

be its sample mean.
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Stationary property

Then the sample autocovariance function is given by

γ̂(h) = 1
n

n∑
t=h+1

(xt − x̄) (xt−h − x̄)

and the sample ACF is given by

ρ̂(h) = γ̂(h)
γ̂(0) .

For example, if the series has length n = 25 then the estimate can be
ρ̂(0) = 1, ρ̂(1) = 0.387, ρ̂(2) = 0.164, . . . , ρ̂(13) = −0.265.
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ρ̂(h) represents the autocorrelation function observed for the time
series for different values of h and gives information about the ACF
ρ(h) of the (unknown) process that generated the dataset.
The graph of ρ̂(h) with respect to different lags h is defined as
correlogram of xt.
The correlogram gives information about the existing ACFs in the
observed sample, that is information about serial dependence.
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Figure: Correlogram of a stationary series.
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It can be shown that there is no ACF in the generating process (i.e., if
ρ(h) = 0 when h ̸= 0), that is, if the process is a white noise then in
the observed series and sa n increases we have

ρ̂(h) ∼ N(0, 1
n).

For a series without autocorrelation we expect that the estimated
ACF decreses as h increases and that about 95% of the PACF lies in
the interval ±1, 96/

√
n.

This means that in the plot of the ACF, the bars corresponding to the
estimated autocorrelation that are inside the blue lines (the interval
±1, 96/

√
n) can be considered null.
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The ACF is considered to be significantly different from zero if its
value lies outside the interval(

−1, 96√
n ,

1, 96√
n

)
.

Values of ρ̂(h) inside the interval, although different for zero, suggest
that the estimated autocorrelation can be due to randomness (i.e.,
not being a property of the process). Think about the correlogram of
the white noise.
Note, however, that even when there is no autocorrelation, we
sometimes expect to see ρ̂(h) outside the blue lines.
That is, when computing the ACF for the first 30 ACF coefficients,
we can expect to see one, two or even three ouside the blue lines.
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Figure: The blue lines correspond to the interval ±1, 96/
√

n per n = 200.
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Some instruments: lag operator and differences

lag operator:
Bxt = xt−1

when applied twice to the series we get

B2xt = B(Bxt) = B(xt−1) = xt−2

Morel generally,
Bkxt = xt−k.

difference operator:

∇1xt = xt − xt−1 = (1 − B)xt.

More generally,

∇kxt = xt − xt−k = (1 − Bk)xt.
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Modeling

One of the most important steps in statistics is how to build models
that can represent well phenomena of interest, with the goal to
describe, interpret and possibly forecast them.
Generally, a model is characterized by a relation cause-effect among
the variables that is the most parsimonious that can be achieved, that
is a relation that makes use of the less number of parameters to
represent it.
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In statistics, that kind of relation is not expresses in a deterministic
form such as

Xt = f(Xt−1, . . . ,Xt−k, θ).

Rather, it includes a noise component ϵt that that accounts for the
randomness related with the choice of the model

Xt = f(Xt−1, . . . ,Xt−k, θ) + ϵt.

For example, we can think of a model

Xt = α+ βXt−1 + ϵt.

The goal is to understand the model that generate the observed series.
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Building the model

Choose a class of models that may have generated the observed series
(ARMA,ARIMA,ARCH,GARCH).
Identify the class of models in a parsimonious way, among those that
better fit the observed series the model with less explanarory variables
(use ACF,PACF, AIC).
Estimate the parameters (OLS, MLE).
Diagnostic: evaluate if the selected model fits the observed series
and/or if the hypothesis about the distribution of the shock are
correct.
Use the model to forecast.
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ARMA models

We will first study a family of linear models, ARMA(p, q), that evolve
in time according to a dynamics that explains present vales depending
on past values by means of a linear relation.
More specifically, within this class of models the observation at time t
depends on that at time t − 1, t − 2, . . . , t − p and on the shocks at
time t, t − 1, t − 2, . . . , t − q.
We will consider Moving Average models, MA(q), then
Autoregressive, AR(p), and finally the Autoregressive Moving Average
ARMA(p, q).
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